General Functions
In Hilbert Space, nobody can hear you scream...
Last updated
In Hilbert Space, nobody can hear you scream...
Last updated
The primary mathematical object in quantum theory is the . We consider only finite-dimensional Hilbert spaces, denoted by . Although we will be considering finite-dimensional spaces exclusively, we note here that many of the statements and claims extend directly to the case of separable, infinite-dimensional Hilbert spaces, especially for operationally-defined tasks and information quantities.
A -dimensional Hilbert space is defined to be a complex vector space equipped with an inner product. We use the notation to denote a vector in . More generally, a Hilbert space is a "complete inner product" space.
A ket is of the form . Mathematically it denotes a , , in an abstract (complex) , and physically it represents a state of some quantum system. An example of a Ket can be represents a vector .
A bra is of the form . Mathematically it denotes a , i.e. a that maps each vector in to a number in the complex plane . Letting the linear functional act on a vector is written as . The bra is similar to the ket, but the values are in a row, and each element is the complex of the ket's elements.
In the simple case where we consider the vector space , a ket can be identified with a , and a bra as a .
&
The Partial Transpose plays an important role in quantum information theory due to its connection with entanglement. In fact, it leads to a sufficient condition for a bipartite state to be entangled.
partial_transpose(...)
is a function that computes the partial transpose of a matrix. The transposition may be taken on any subset of the subsystems on which the matrix acts.
Defining a state X
with [ ... ]
Now we can apply the partial_transpose
function over our state X
:
, for two dimensional Hilbert Space ,
Defining a basis state , we can use the ket
module like this:
Here we have defined the ket v for . In numpy, defining the same would need one to define the matrix manually, just as shown in the .
Given quantum systems and , the partial transpose on is denoted by , and it is defined as,